آموزش دروس دبیرستان - هوالفتاح العلیم

آموزش شیمی ۱-زیست شناسی ۱

آموزش دروس دبیرستان - هوالفتاح العلیم

آموزش شیمی ۱-زیست شناسی ۱

آموزش شیمی و زیست شناسی اول دبیرستان- هوالفتاح العلیم

 جلسه چهارم - هوالفتاح العلیم- سوالات زیست ۱ وشیمی ۱ دبیرستان   

به نام خود خدا

امام صادق علیه السلام :مَن صَدِّقَ لسانَهُ  زکّی عَمَلَهُ 

" کسی که راستگو باشد؛ عملش خوب است"

 

با سلام       امیدوارم که خوب باشید.  شهادت امام صادق علیه السلام تسلیت باد

 

چون عده ای هنوز پاسخ سوالات را به بنده اریه نکرده اند مطلب جدیدی را انتخاب نکردم.

 

نمونه سوالات شیمی اول دبیرستان: صفحه 1-14

1

مصرف نهان آب را توضبیح دهید.برای آن یک مثال بگویید.

2

ویژگی های غیر عادی آب را نام ببرید.

3

برای آنکه دمای 10 گرم آلومینیم را 1درجه سلسیوس افزایش دهیم چه مقدار انرژی لازم است؟

4

با توجه به شکل صفحه 10 کدام ظرف محتوی آب است؟چرا؟

5

کدامیک ازمنابع مقابل تجدید پذیرند؟آب نفت گیاهان مس

6

چرا اختلاف دمای روز وشب در کره زمین زیاد نیست؟

7

با ذکر آزمایشی میزان کشش سطحی آب را بررسی کنید:

8

این اصطلاحات زا توضیح دهید:     عنصر -  فرمول شیمیایی مولکول

9

چرا آب می تواند به ماده ای کشنده تبدیل شود

10

برای هر فرمول شیمیایی نام  عنصرها وتعداد اتمهای آن را مشخص کنید.

H2O – MgS – Fe2O3 – HNO3 –CaCO3-Al(OH)3

 

سوالات تحقیقی

موفق باشید

نظرات 5 + ارسال نظر
شایان چوبینی ۱۰۱ سما جمعه 3 آذر‌ماه سال 1385 ساعت 09:21 ب.ظ

نام میتوکُندری ترکیبی است از دو واژه یونانی Mito به معنای رشته و chondrion به معنی دانه. چون این اندامک اغلب رشته‌ای یا به صورت دانه‌های کوچک در سیتوپلاسم همه سلولهای یوکاریوتی وجود دارد.


میتوکندری‌ها در تمام یاخته‌های دارای تنفس هوازی به جز در باکتری‌ها که آنزیم‌های تنفسی آنها در غشای سیتوپلاسمی جایگزین شده‌اند وجود دارند. این اندامک‌ها، نوعی دستگاه انتقال انرژی هستند که موجب می‌شوند انرژی شیمیایی موجود در مواد غذایی با عمل فسفوریلاسیون اکسیداتیو، به صورت پیوندهای پرانرژی فسفات (ATP) ذخیره شود.

فهرست مندرجات [مخفی شود]
۱ تاریخچه
۲ شکل و اندازه میتوکندری و تغییرات آنها
۳ ساختمان میتوکندری
۴ ژنوم میتوکندری
۵ نقش زیستی میتوکندری
۶ منشا میتوکندری
۷ منبع



[ویرایش] تاریخچه
اولین بررسی‌های انجام شده بر روی میتوکندری‌ها، در سال 1894 به‌وسیله آلتمن صورت گرفت که آنها را بیوپلاست یا جایگاههای زنده نامید. و نظر داد که بین واکنشهای اکسایش و کاهش سلول و میتوکندری وابستگی وجود دارد. در سال (1897) بتدا با بررسیهای بیشتر آنها را میتوکندری نامید و در 1900، میکائیلیس به کمک معرف رنگی سبز ژانوس میتوکندری را در سلولهای زنده مشاهده کرد. واربورگ در سال 1913 آنزیمهای تنفسی را در این اندامک نشان داد. سرانجام برای اولین بار، در سال 1934، بنسلی و هر، توانستند آنها را از سلولهای کبدی جدا کرده و بعد آن بررسیهای بیشتر و عملی‌تر روی آن صورت گرفت.





[ویرایش] شکل و اندازه میتوکندری و تغییرات آنها
شکل میتوکندریها متغیر اما اغلب رشته‌ای یا دانه‌ای می‌باشند. میتوکندریها در برخی مراحل عمل خود می‌توانند به شکلهای دیگری درآیند. مثلا، یک میتوکندری طویل ممکن است در یک انتهای خود متورم شده و به صورتی شبیه گرز درآید. (مثلاً در سلولهای کبدی چند ساعت بعد ورود غذا) یا ممکن است میان تهی شده و شکلی شبیه راکت تنیس به خود بگیرد. گاهی میتوکندریها حفره مانند شده و دارای بخش مرکزی روشنی می‌شود. اما بعد از مدتی، تمام این تغییرات به حالت اول برمی‌گردد.

اندازه
اندازه میتوکندریها نیز متغیر است و در بیشتر سلولها ضخامت آنها 50µm و طول تا 7µm می‌رسد. اما متناسب با شرایط محیطی و نیز مرحله عمل سلول، فرق خواهد کرد. در سلولهایی که هم نوع هستند یا دارای عمل مشترک می‌باشند دارای اندازه ثابت می‌باشند.


[ویرایش] ساختمان میتوکندری
غشای خارجی حدود 75 - 60 آنگستروم ضخامت دارد و از نوع غشاهای زیستی با ساختمان سه لایه‌ای می‌باشد. این غشا صاف و فاقد چین خوردگی است و هیچ ریبوزومی به آن نچسبیده، گاهی توسط شبکه آندوپلاسمی احاطه می‌شود اما هیچگاه پیوستگی بین این دو دیده نشده است.

اطاق خارجی زیر غشای خارجی، فضایی در حدود 200- 100 آنگستروم وجود دارد که به آن اطاق خارجی گفته می‌شود. که شامل دو بخش است: فضای بین دو غشا و فضای درون تاجها یا کریستاها یا کرتها. اما در برخی جاها غشای داخلی و خارجی بهم چسبیده و اندازه این فضا تقریباً صفر می‌شود. در این مناطق در مجاورت دو غشا، تراکمی از ریبوزوم های سیتوپلاسمی دیده می‌شود. به خاطر همین در نظر گرفته شده که این مناطق، محل عبور پروتئینهای مورد نیاز از سیتوزول به میتوکندری می‌باشند. در این اطاق، ترکیباتی مثل آب، نمکهای کانی و یونها، پروتئینها، قندها، و چربیها SO2، O2، ATP و ADP وجود دارند. مقدار آب، بر اندازه کریستاها و در نتیجه بر ساخت ATP تأثیر گذار است.

غشای داخلی ضخامتش مثل غشای خارجی است اما ترکیب شیمیای آن فرق می‌کند. دارای چین‌خوردگیهای فراوانی است که به چینها، تاج یا کریستا گفته می‌شود. این چینها برخلاف سلولهای گیاهی، در سلولهای جانوری منظم قرار گرفته‌اند.

اطاق داخلی فضای درونی میتوکندری که به‌وسیله غشای داخلی دربرگرفته شده، اطاق داخلی گویند. که از ماده زمینه‌ای با بستره دربر گرفته شده است که ترکیب و ویژگیهای کلی آن، شبیه سیتوزول می‌باشد و دارای آنزیمهای خاص و ریبوزوم خاص خود (70S شبیه سلولهای پروکاریوتی) می‌باشد. تعداد DNA، بر حسب نوع و سن سلول فرق می‌کند و مثل پروکاریوتها، دارای سیتوزین و گوانین زیادی است در نتیجه در مقابل گرما مقاوم می‌باشد.


[ویرایش] ژنوم میتوکندری
بررسیها نشان می‌دهد که DNA سازی در میتوکندری صورت می‌گیرد. طبق این بررسی به وجود DNA در میتوکندری پی می‌بریم. علاوه بر همانند سازی RNA و DNA سازی، پروتئین سازی هم در میتوکندری صورت می‌گیرد. این فراینده توسط آنزیمها و ملکولهای خاص خود اندامک صورت می‌گیرد. DNA میتوکندری اغلب موجودات حلقوی است. جایگاه DNA در ماده زمینه میتوکندری و بعضی مواقع چسبیده به غشای داخلی میتوکندری است. ژنوم میتوکندری سلولهای اغلب جانوران از 20 - 15 هزار جفت نوکلئوتید تشکیل یافته است و ژنوم میتوکندری در پستانداران حدود 105 برابر کوچک‌تر از ژنوم هسته‌ای است.

محصولاتی که توسط DNA میتوکندری رمز می‌شوند شامل RNAهای ریبوزومی میتوکندری tRNA ها و برخی از پروتئینهای مسیر تنفس می‌باشد. بعضی از پروتئینهای میتوکندری نیز در هسته رمز می‌شوند و پس از ساخته شدن در سیتوزول وارد اندامک می‌شوند. مثال مفروض از صفتی که توسط ژنوم میتوکندری تعیین می‌شود، جهت پیچش صدف در حلزون است که از وراثت سیتوپلاسمی تبعیت می‌کند. در حقیقت این صفات توسط ژنوم میتوکندری که همراه میتوکندری‌های موجود در سیتوپلاسم وارد سلول تخم می‌شوند، انتقال می‌یابد و توارث به صورت تک والدی در اکثر آنها می‌باشد.


[ویرایش] نقش زیستی میتوکندری
تنفس هوازی سلولها
تمام مواد انرژی‌زا، ضمن تغییرات متابولیکی درون سیتوپلاسمی با واسطه ناقلین اختصاصی به بستره میتوکندری می‌رسد. گلوکز بعد از تبدیل به استیل کو آنزیم A طی گلیکولیز به میتوکندری وارد می‌شود تا در چرخه کربس استفاده شود و اسیدهای چرب به‌وسیله کارنی تین به داخل میتوکندری حمل شده که اینها هم سرانجام به استیل کو آنزیم A تبدیل می‌شوند. اسیدهای آمینه بعد از ورود به بستره به استیل کو آنزیم A تبدیل می‌شوند.

با انجام هر چرخه کربس که با استفاده از یک استیل کوآنزیم A در بستره میتوکندری آغاز می‌شود، علاوه بر CO2 و H2O سه مولکول نیکوتین آمید آدنین دی نوکلئوتید و یک مولکول FADH2 و یک مولکول GTP تولید می‌شود. این ناقلین انرژی در زنجیره انتقال الکترون استفاده شده و موجب تولید ATP می‌شوند.

سنتز اسیدهای چرب
یکی از راههای تولید اسید چرب، سیستم میتوکندریایی می‌باشد که عکس اکسیداسیون یا تجزیه آنها می‌باشد.

دخالت میتوکندری در گوارش چربیها
در هنگام گرسنگی، میتوکندریها به طرف ذرات چربی حرکت کرده و روی ذرات چرب خم شده و آنزیمهای میتوکندریایی شروع به هضم چربی و آزادسازی انرژی می‌کنند.

ذخیره و تجمع مواد در میتوکندریها
میتوکندریها می‌توانند در اطاق داخلی خود مواد مختلف را انباشته کنند که این مواد عبارت‌اند از: ترکیبات آهن‌دار، چربیها، پروتئینها، کاتیونها و آب. در اثر ذخیره این مواد، میتوکندریها اغلب به حالت یک غشایی و شبیه باکتریهای کوچک دیده می‌شوند و به تدریج، کریستاها محو می‌شوند اما بعد از حذف این مواد، دوباره همه به حالت اول برمی‌گردد.

محل میتوکندریها در سلول
اغلب در اطراف هسته دیده می‌شوند اما در شرایط مرضی در حواشی سیتوپلاسم ظاهر می‌شوند. این پراکنش، تحت تأثیر مقدار گلیکوژن و اسید چرب می‌تواند قرار بگیرد. در طول میتوز میتوکندریها در مجاورت دوک جمع می‌شوند و وقتی تقسیم پایان می‌یابد، در دو سلول دختر، پراکنش تقریباً یکسانی پیدا می‌کند. پراکنش میتوکندریها را می‌توان بر حسب عمل آنها از نظر تامین انرژی، مطرح کرد که میتوکندریها در داخل سلولها جابجا شده و خود را به جایی که نیاز به ATP بیشتر است می‌رسانند.

تعداد میتوکندریها در سلول
تشخیص ارزش میتوکندریایی یک سلول دشوار است. اما اغلب بر حسب نوع سلول مرحله عمل سلول متفاوت می‌باشد. در یک سلول معمولی کبد بیشترین تعداد و در حدود 1000 تا 1600 عدد وجود دارد که در اثر تحلیل رفتن سلول و نیز سرطانی شدن آن کاهش می‌یابد. و در مقابل، تعداد میتوکندری در بافت لنفی، خیلی کمتر است. در سلولهای گیاهی، کمتر از جانوری می‌باشد چون بسیاری از اعمال میتوکندریها، به‌وسیله کلروپلاست انجام می‌شود.


[ویرایش] منشا میتوکندری
دو نظریه بیان شده است: یکی اینکه میتوکندریها ممکن است از قالبهای ساده‌تری ساخته شوند (تشکیل Denovo) و دیگر اینکه میتوکندریهای جدید از تقسیم میتوکندریهای قبلی بوجود می‌آیند. به این صورت که تعداد آنها، در طول میتوز و نیز در اینترفاز افزایش یافته و بعد بین دو سلول دختر، پراکنش می‌‌یابند.

خاستگاه پروکاریوتی میتوکندری
فرضیه‌ای در این صدد مطرح شده است که: در گذشته بسیار دو ر، جو زمین فاقد اکسیژن بوده و جاندارانی که در آن زمان می‌زیسته‌اند بی‌هوازی بودند. با گذشت زمان و ضمن واکنشهای شیمیایی، جو زمین دارای اکسیژن شده و به تدریج جانداران آن زمان و بویژه پروکاریوتها به علت ساختمان ساده خود، هوازی شده‌اند. بعدها این پروکاریوتها هوازی شده، توسط سلولهای یوکاریوتی بلعیده شدند و از این همزیستی سلولهای یوکاریوتی هوازی ایجاد شدند. پس اجداد میتوکندری براساس این فرضیه، باکتریهای اولیه می‌باشند.


[ویرایش] منبع
دانشنامه رشد.

برگرفته از «http://fa.wikipedia.org/wiki/%D9%85%DB%8C%D8%AA%D9%88%DA%A9%D9%86%D8%AF%D8%B1%DB%8C»
رده‌های صفحات: زیست‌شناسی

شایان چوبینی ۱۰۱ سما جمعه 3 آذر‌ماه سال 1385 ساعت 09:30 ب.ظ

خواص غیر عادی آب


نگاه کلی

ادامه حیات در موجودات وابسته به آب است که فراوانترین ماده در بافتهای گیاهی و حیوانی و دنیای اطراف ما می‌باشد. بیش از 80 درصد سطح زمین را آب پوشانده است که به صورت آب نسبتا خالص در رودخانه و دریاچه‌ها و محلول رقیق نمک در اقیانوسها و به صورت جامد تقریبا خالص در دشتهای برف و رودخانه‌های یخی و پهنه‌های یخی قطبی وجود دارد. خواص غیر عادی آب اثر عمیقی بر ماهیت محیط زیست دارد.

بالا بودن گرمای ویژه آب از تغییرات زیاد دمای سطح زمین جلوگیری می‌کند. حجم عظیم آب در اقیانوسها و دریاها گرمای خورشید را در طول روز جذب کرده و بدون تغییر دمای قابل ملاحظه‌ای آن را شب به اتمسفر بر می‌گردانند. در روی کره ماه که آب وجود ندارد و سطح آن صخره‌هایی با گرمای ویژه پایین (یک پنجم گرمای ویژه آب) تشکیل شده است گستره دمایی می‌تواند از 150 درجه تا 120 درجه تغییر کند.

توجیه خواص ویژه آب با پیوند هیدروژنی



ابر الکترونی در H2O


مولکول آب از یک اتم اکسیژن و دو اتم هیدروژن تشکیل شده است و دارای ساختمانی خمیده با زاویه '10430 می‌باشد. خواص غیر عادی آب حاکی از آن است که در این مولکول یک نوع نیروی بین مولکولی قوی وجود دارد. این نیروی قوی ، جاذبه میان H از یک مولکول آب و اکسیژن از مولکول دیگر می‌باشد و به پیوند هیروژنی موسوم است.



اختلاف الکترونگاتیوی میان O و H به اندازه ایست که ابر الکترونی در H2O (و مولکولهای مشابه مانند NH3 , NF) از هیدروژن به طرف اکسیژن جابجا می‌شود و هیدروژن در تاثیر متقابل با مولکولهای مجاور تقریبا مانند یک پروتون عمل می‌کند. اندازه کوچک هیدروژن باعث می‌شود که اتم اکسیژن از مولکول مجاور به آن نزدیک شده و پیوندی میان آنها ایجاد شود. نکته مهم این است که پیوند هیدروژنی فقط بین H و اکسیژن و نیتروژن و فلوئور ایجاد می‌شود. خواص غیر عادی آب با پیوند هیدروژنی توجیه می‌شود.

خواص ویژه آب:


بالابودن گرمای ویژه آب



بالا بودن گرمای ویژه آب نسبت به دیگر مایعات و جامدات نشان دهنده مقدار بالای انرژی لازم برای شکستن پیوندهای هیدروژنی آب است. تعداد پیوندهای هیدروژنی با افزایش دما کم می‌شود ولی حتی تا100 درجه آن قدر پیوند هیدروژنی موجود است تا باعث شود گرمای تبخیر آب در مقایسه با سایر مایعات بالاتر باشد (540cal/gr). همان گونه که اشاره شد این خاصیت آب سبب شده است که آب نقش تنظیم کننده حرارتی داشته باشد و جهان را در برابر تغییرات ناگهانی دما حفظ کند.



بالا بودن گرمای تبخیر آب به مقدار زیادی باعث ثابت ماندن دمای بدن در محدوده کم می‌شود. مقدار زیادی از گرمای حاصل از سوخت و ساز بدن از طریق تبخیر سطحی آب از میان روزنه‌های پوست خارج می‌شود.

افزایش حجم آب هنگام انجماد

هنگام انجماد آب مولکولهای H2O در یک شش ضلعی باز قرار می‌گیرند هر اتم اکسیژن در بلور یخ به 4 هیدروژن وصل می‌شود که با 2 اتم هیدروژن پیوند کووالانسی معمولی و با دوتای دیگر پیوند هیدروژنی تشکیل می‌دهد. بالا بودن نسبت فضای خالی در ساختمان یخ باعث کمتر شدن تراکم آن نسبت به آب می‌شود. افزایش حجم باعث کاهش چگالی آب می‌شود. سرد شدن آب تا زیر 4 درجه باعث کاهش تدریجی چگالی آب می‌شود و این نشان می‌دهد که در نقطه انجماد آب انتقال از یک ساختمان مولکولی فشرده و بسته به یک ساختمان باز به طور ناگهانی صورت نمی‌گیرد بلکه به تدریج و در گستره دما انجام می‌شود.

با کاهش دما مولکولهای بیشتری به شکل ساختمان یخ می‌پیوندند و در دمای زیر 4 درجه تبدیل به ساختمان باز بر انقباض حاصل از سرد کردن غلبه کرده و با پایین آمدن دما به سمت 0 درجه آب منبسط می‌شود. انبساط آب به هنگام انجماد هم اثرات مفید و هم اثرات مضری دارد. انجماد آب در بافتهای گیاهی و جانوری باعث تخریب دیواره سلولی در اثر انبساط می‌شود. اما همین فرایند انبساط در اثر یخ زدن آب در حفره‌های سنگها و صخره‌ها باعث شکستن سنگها شده و ایجاد خاکهای حاصلخیز می‌کند.

دانسیته آب



تغییر دانسیته آب با دما که این تغییر در 4 درجه به حداکثر مقدار خود می‌رسد در ناحیه‌هایی که آب و هوای زمستانی دارند اهمیت فراوانی دارد با پائین آمدن دمای هوا لایه‌های متراکم‌تر آب در سطح دریاچه به کف آن جابجا می‌شوند و در این فرایند گردشی اکسیژن و مواد غذایی تقریبا بطور یکنواخت به تمام قسمتهای دریاچه می‌رسد.

بعد از رسیدن به حالت پایدار دمای قسمت زیرین آب به 4 درجه می‌رسد و باعث می‌شود تا جانوران آبزی در زمستان به زندگی خود ادامه دهند. از طرف دیگر کم بودن دانسیته یخ نسبت به آب باعث شناور شدن یخ در سطح آب می‌شود. اگر یخ سنگین‌تر از آب بود آب کف دریاها و رودخانه‌ها یکپارچه منجمد می‌شد و عواقب خطرناکی برای آبزیان در پی داشت.

کشش سطحی



پیوند هیدروژنی بین مولکولهای آب باعث تشکیل غشای نسبتا محکمی در سطح آن می‌نمایند که در نتیجه باعث می‌شود که یک سوزن یا تیغ بر روی آب بماند یا برخی حشرات در سطح آب راه روند همچنین این خاصیت باعث بالا رفتن آب از لوله‌های موئین می‌شود. کشش سطحی آب با افزایش دما به دلیل کم شدن پیوندهای هیدروژنی کاهش می‌یابد.





خاصیت تر کنندگی



اگر نیروهای ما بین مولکولی مایع کمتر از نیروی متقابل بین مایع و یک جسم جامد باشد مایع در سطح جامد پخش می‌شود که خاصیت تر کنندگی نام دارد. ایجاد سطح مقعر بر آب موجود در لوله‌های نازک با توجه به پدیده تر کردن توجیه می‌شود. خاصیت تر کنندگی آب باعث استفاده از آن در شستشو می‌شود. دمای بالا و شوینده‌ها خاصیت تر کنندگی آب را بالا می‌برند.

قطبیت

قطبیت آب به دلیل اختلاف الکترونگاتیوی بین اتمهای اکسیژن و هیدروژن می‌باشد.

استفاده از آب به عنوان حلال




آب به دلیل ثابت دی‌الکتریک بالا و همچنین داشتن قطبیت ترکیبات یونی را در خود حل می‌کند. ثابت دی‌الکتریک بالای آب باعث کاهش نیروی جاذبه میان یونها می‌شود. در نتیجه احتمال ترکیب مجدد آنها و خارج شدن به صورت رسوب را کم می‌کند. آب از معدود مایعاتی است که می‌تواند در دمای اتاق مقدار زیادی از ترکیبات یونی را در خود حل کند. همچنین آب مواد مولکولی مانند متانول ، آمونیاک ، اوره و … را که می توانند با آب پیوند هیدروژنی برقرار کنند هم در خود حل می‌کند.


رضا فشکی کلاس ۱۰۲ شنبه 4 آذر‌ماه سال 1385 ساعت 10:40 ب.ظ http://dars1.blogsky.com

۱.الف: انیون زیرا الکترون دارای بار منفی میباشد
ب:دو الکترون
پ:توسط هیدروزن مولکول اب احاطه میشود زیرا انیون بارش منفی و توسط هیدروزن بارش مثبت ات جذب میشود
۲. سختی که ناشی از کلسیم هیدروژن کربنات باشد را میگویند برای رفع سختی موقت اب .اب را گرم میکنند تا یون های کلسیم به صورت رسوب کلسیم کربنات در امده و اب نرم ایجاد شود
۳.اب نمک غلیز
۴.اب باران در مسیر خود با گاز co2ترکیب میشود واسیدضعیفی را با نام کربنیک اسید میسازد

مهرداد انواری ۱۲۰ سما ۱ جمعه 10 آذر‌ماه سال 1385 ساعت 02:07 ب.ظ







خواص غیر عادی آب


نگاه کلی

ادامه حیات در موجودات وابسته به آب است که فراوانترین ماده در بافتهای گیاهی و حیوانی و دنیای اطراف ما می‌باشد. بیش از 80 درصد سطح زمین را آب پوشانده است که به صورت آب نسبتا خالص در رودخانه و دریاچه‌ها و محلول رقیق نمک در اقیانوسها و به صورت جامد تقریبا خالص در دشتهای برف و رودخانه‌های یخی و پهنه‌های یخی قطبی وجود دارد. خواص غیر عادی آب اثر عمیقی بر ماهیت محیط زیست دارد.

بالا بودن گرمای ویژه آب از تغییرات زیاد دمای سطح زمین جلوگیری می‌کند. حجم عظیم آب در اقیانوسها و دریاها گرمای خورشید را در طول روز جذب کرده و بدون تغییر دمای قابل ملاحظه‌ای آن را شب به اتمسفر بر می‌گردانند. در روی کره ماه که آب وجود ندارد و سطح آن صخره‌هایی با گرمای ویژه پایین (یک پنجم گرمای ویژه آب) تشکیل شده است گستره دمایی می‌تواند از 150 درجه تا 120 درجه تغییر کند.

توجیه خواص ویژه آب با پیوند هیدروژنی



ابر الکترونی در H2O


مولکول آب از یک اتم اکسیژن و دو اتم هیدروژن تشکیل شده است و دارای ساختمانی خمیده با زاویه '10430 می‌باشد. خواص غیر عادی آب حاکی از آن است که در این مولکول یک نوع نیروی بین مولکولی قوی وجود دارد. این نیروی قوی ، جاذبه میان H از یک مولکول آب و اکسیژن از مولکول دیگر می‌باشد و به پیوند هیروژنی موسوم است.



اختلاف الکترونگاتیوی میان O و H به اندازه ایست که ابر الکترونی در H2O (و مولکولهای مشابه مانند NH3 , NF) از هیدروژن به طرف اکسیژن جابجا می‌شود و هیدروژن در تاثیر متقابل با مولکولهای مجاور تقریبا مانند یک پروتون عمل می‌کند. اندازه کوچک هیدروژن باعث می‌شود که اتم اکسیژن از مولکول مجاور به آن نزدیک شده و پیوندی میان آنها ایجاد شود. نکته مهم این است که پیوند هیدروژنی فقط بین H و اکسیژن و نیتروژن و فلوئور ایجاد می‌شود. خواص غیر عادی آب با پیوند هیدروژنی توجیه می‌شود.

خواص ویژه آب:


بالابودن گرمای ویژه آب



بالا بودن گرمای ویژه آب نسبت به دیگر مایعات و جامدات نشان دهنده مقدار بالای انرژی لازم برای شکستن پیوندهای هیدروژنی آب است. تعداد پیوندهای هیدروژنی با افزایش دما کم می‌شود ولی حتی تا100 درجه آن قدر پیوند هیدروژنی موجود است تا باعث شود گرمای تبخیر آب در مقایسه با سایر مایعات بالاتر باشد (540cal/gr). همان گونه که اشاره شد این خاصیت آب سبب شده است که آب نقش تنظیم کننده حرارتی داشته باشد و جهان را در برابر تغییرات ناگهانی دما حفظ کند.



بالا بودن گرمای تبخیر آب به مقدار زیادی باعث ثابت ماندن دمای بدن در محدوده کم می‌شود. مقدار زیادی از گرمای حاصل از سوخت و ساز بدن از طریق تبخیر سطحی آب از میان روزنه‌های پوست خارج می‌شود.

افزایش حجم آب هنگام انجماد

هنگام انجماد آب مولکولهای H2O در یک شش ضلعی باز قرار می‌گیرند هر اتم اکسیژن در بلور یخ به 4 هیدروژن وصل می‌شود که با 2 اتم هیدروژن پیوند کووالانسی معمولی و با دوتای دیگر پیوند هیدروژنی تشکیل می‌دهد. بالا بودن نسبت فضای خالی در ساختمان یخ باعث کمتر شدن تراکم آن نسبت به آب می‌شود. افزایش حجم باعث کاهش چگالی آب می‌شود. سرد شدن آب تا زیر 4 درجه باعث کاهش تدریجی چگالی آب می‌شود و این نشان می‌دهد که در نقطه انجماد آب انتقال از یک ساختمان مولکولی فشرده و بسته به یک ساختمان باز به طور ناگهانی صورت نمی‌گیرد بلکه به تدریج و در گستره دما انجام می‌شود.

با کاهش دما مولکولهای بیشتری به شکل ساختمان یخ می‌پیوندند و در دمای زیر 4 درجه تبدیل به ساختمان باز بر انقباض حاصل از سرد کردن غلبه کرده و با پایین آمدن دما به سمت 0 درجه آب منبسط می‌شود. انبساط آب به هنگام انجماد هم اثرات مفید و هم اثرات مضری دارد. انجماد آب در بافتهای گیاهی و جانوری باعث تخریب دیواره سلولی در اثر انبساط می‌شود. اما همین فرایند انبساط در اثر یخ زدن آب در حفره‌های سنگها و صخره‌ها باعث شکستن سنگها شده و ایجاد خاکهای حاصلخیز می‌کند.

دانسیته آب



تغییر دانسیته آب با دما که این تغییر در 4 درجه به حداکثر مقدار خود می‌رسد در ناحیه‌هایی که آب و هوای زمستانی دارند اهمیت فراوانی دارد با پائین آمدن دمای هوا لایه‌های متراکم‌تر آب در سطح دریاچه به کف آن جابجا می‌شوند و در این فرایند گردشی اکسیژن و مواد غذایی تقریبا بطور یکنواخت به تمام قسمتهای دریاچه می‌رسد.

بعد از رسیدن به حالت پایدار دمای قسمت زیرین آب به 4 درجه می‌رسد و باعث می‌شود تا جانوران آبزی در زمستان به زندگی خود ادامه دهند. از طرف دیگر کم بودن دانسیته یخ نسبت به آب باعث شناور شدن یخ در سطح آب می‌شود. اگر یخ سنگین‌تر از آب بود آب کف دریاها و رودخانه‌ها یکپارچه منجمد می‌شد و عواقب خطرناکی برای آبزیان در پی داشت.

کشش سطحی



پیوند هیدروژنی بین مولکولهای آب باعث تشکیل غشای نسبتا محکمی در سطح آن می‌نمایند که در نتیجه باعث می‌شود که یک سوزن یا تیغ بر روی آب بماند یا برخی حشرات در سطح آب راه روند همچنین این خاصیت باعث بالا رفتن آب از لوله‌های موئین می‌شود. کشش سطحی آب با افزایش دما به دلیل کم شدن پیوندهای هیدروژنی کاهش می‌یابد.





خاصیت تر کنندگی



اگر نیروهای ما بین مولکولی مایع کمتر از نیروی متقابل بین مایع و یک جسم جامد باشد مایع در سطح جامد پخش می‌شود که خاصیت تر کنندگی نام دارد. ایجاد سطح مقعر بر آب موجود در لوله‌های نازک با توجه به پدیده تر کردن توجیه می‌شود. خاصیت تر کنندگی آب باعث استفاده از آن در شستشو می‌شود. دمای بالا و شوینده‌ها خاصیت تر کنندگی آب را بالا می‌برند.

قطبیت

قطبیت آب به دلیل اختلاف الکترونگاتیوی بین اتمهای اکسیژن و هیدروژن می‌باشد.

استفاده از آب به عنوان حلال




آب به دلیل ثابت دی‌الکتریک بالا و همچنین داشتن قطبیت ترکیبات یونی را در خود حل می‌کند. ثابت دی‌الکتریک بالای آب باعث کاهش نیروی جاذبه میان یونها می‌شود. در نتیجه احتمال ترکیب مجدد آنها و خارج شدن به صورت رسوب را کم می‌کند. آب از معدود مایعاتی است که می‌تواند در دمای اتاق مقدار زیادی از ترکیبات یونی را در خود حل کند. همچنین آب مواد مولکولی مانند متانول ، آمونیاک ، اوره و … را که می توانند با آب پیوند هیدروژنی برقرار کنند هم در خود حل می‌کند.


مهرداد انواری ۱۰۲ سما ۱ جمعه 10 آذر‌ماه سال 1385 ساعت 02:17 ب.ظ



------------------------------------------------------------------------------
دید کلی
محلولها ، مخلوطهایی همگن هستند. محلولها را معمولا بر حسب حالت فیزیکی آنها طبقه بندی می‌کنند: محلولهای گازی ، محلولهای مایع و محلولهای جامد. بعضی از آلیاژها محلولهای جامدند؛ سکه‌های نقره‌ای محلولهایی از مس و نقره‌اند و برنج محلولی جامد از روی در مس است. هر آلیاژی محلول جامد نیست، بعضی از آلیاژها مخلوطهایی ناهمگن اند. محلولهای مایع متداولترین محلولها هستند و بیشترین کاربرد را در بررسیهای شیمیایی دارند. هوا هم مثالی برای محلولهای گازی می‌باشد.

ماهیت محلولها
در یک محلول ، معمولا جزئی که از لحاظ کمیت بیشترین مقدار را دارد، حلال و سایر اجزا را مواد حل شده (حل شونده) می‌گوییم. اما گاهی آسانتر آن است که جزئی از محلول را با آنکه مقدارش کم است، حلال بنامیم و گاهی اصولا اطلاق نام حلال و حل شونده به اجزای یک محلول (مثلا محلولهای گازی) چندان اهمیتی ندارد. بعضی از مواد به هر نسبت در یکدیگر حل می‌شوند.

امتزاج پذیری کامل از ویژگیهای اجزای تمام محلولهای گازی و بعضی از اجزای محلولهای مایع و جامد است. ولی غالبا، مقدار ماده ای که در حلال معینی حل می شود، محدود است. انحلال پذیری یک ماده در یک حلال مخصوص و در دمای معین، بیشترین مقداری از آن ماده است که در مقدار معینی از آن حلال حل می شود و یک سیستم پایدار به وجود می آورد.

غلظت محلول
برای یک محلول معین ، مقدار ماده حل شده در واحد حجم حلال یا در واحد حجم محلول را غلظت ماده حل شده می‌گوییم. مهمترین نوع غلظتها که در آزمایشگاه بکار می‌رود مولاریته و نرمالیته است. مولاریته عبارت است از تعداد مولهای یک ماده که در یک لیتر محلول وجود دارد. به همین دلیل آن را مول بر لیتر یا M/L می‌گیرند. نرمالیته یک محلول عبارتست از تعداد هم ارز گرمهای (اکی والان گرم های) ماده موجود در یک لیتر محلول. نرمالیته را با N نشان می‌دهند.

انواع محلولها
محلولهای رقیق
محلولهایی که غلظت ماده حل شده آنها نسبتا کم است.

محلولهای غلیظ
محلولهایی که غلظت نسبتا زیاد دارند.

محلول سیر شده
اگر مقدار ماده حل شده در یک محلول برابر با انحلال پذیری آن در حلال باشد، آن محلول را محلول سیر شده می‌نامیم. اگر به مقداری از یک حلال مایع ، مقدار زیادی ماده حل شونده (بیشتر از مقدار انحلال پذیری آن) بیفزاییم، بین ماده حل شده و حل شونده باقیمانده تعادل برقرار می‌شود. ماده حل شونده باقیمانده ممکن است جامد ، مایع یا گاز باشد. در تعادل چنین سیستمی ، سرعت انحلال ماده حل شونده برابر با سرعت خارج شدن ماده حل شده از محلول است. بنابراین در حالت تعادل ، غلظت ماده حل شده مقداری ثابت است.

محلول سیر نشده
غلظت ماده حل شده در یک محلول سیر نشده کمتر از غلظت آن در یک محلول سیر شده است.

محلول فراسیرشده
می‌توان از یک ماده حل شونده جامد ، محلول فراسیر شده تهیه کرد که در آن، غلظت ماده حل شده بیشتر از غلظت آن در محلول سیر شده است. این محلول ، حالتی نیم پایدار دارد و اگر مقدار بسیار کمی از ماده حل شونده خالص بدان افزوده شود، مقداری از ماده حل شده که بیش از مقدار لازم برای سیرشدن محلول در آن وجود دارد، رسوب می‌کند.

خواص فیزیکی محلولها
بعضی از خواص محلولها به دو عامل ، نوع ماده حل شده و غلظت آن در محلول بستگی دارند. این مطلب برای بسیاری خواص فیزیکی محلولها از جمله ، محلولهای آبی درست به نظر می‌رسد. برای مثال، محلول نمک طعام در آب بی رنگ پرمنگنات پتاسیم در آب، بنفش صورتی است (در اینجا نوع ماده حل شده مطرح است). افزون بر این ، می‌دانیم که هر چه بر محلول پرمنگنات آب بریزیم و آن را رقیقتر کنیم، از شدت رنگ آن کاسته می‌شود (اینجا غلظت محلول مطرح است).

یکی دیگر از خواص فیزیکی که به این دو عامل بستگی دارد، قابلیت هدایت الکتریکی محلول آبی مواد گوناگون است. چهار خاصه فیزیکی دیگر از محلولها وجود دارد که به نوع و ماهیت ذرات حل شده بستگی ندارد، بلکه فقط به مجموع این ذرات وابسته است. به عبارت دیگر ، تنها عامل موثر بر خواص محلول در اینجا ، غلظت است. چنین خواصی از محلول را معمولا "خواص جمعی محلولها" (خواص کولیگاتیو Colligative properties) می‌نامند و عبارتند از کاهش فشار بخار ، صعود نقطه جوش ، نزول نقطه انجماد و فشار اسمزی.

کاهش فشار بخار
وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، فشار بخار آن کاهش می‌یابد و مقدار کاهش به مقدار حل شونده بستگی دارد. هر چه میزان حل شونده بیشتر باشد، میزان کاهش در فشار بخار بیشتر است. برای مثال اگر دو ظرف را در نظر بگیریم که در آنها مقدار مساوی مایع وجود دارد که یکی محتوی مولکولهای آب خالص و دیگری محتوی محلول قند در آب است، بدیهی است که تعداد مولکولهای آب در واحد حجم از آب قند ، کمتر از آب خالص است. به همین نسبت ، تعداد مولکولهای آب در سطح آب قند ، نیز کمتر می‌باشد. بنابراین، نسبت مولکولهای پرانرژی آب که قادر به تبخیر از سطح آب قند هستند، کمتر می‌باشد و در نتیجه فشار بخار محلول کمتر می‌شود.

افزایش نقطه جوش
در اثر حل شدن مقداری حل شونده غیر فرار در یک حلال ، نقطه جوش آن افزایش می‌یابد. مقدار افزایش فقط به مقدار حل شونده بستگی دارد. برای مثال ، آب در شرایط متعارفی (دمای 25 درجه سانتیگراد و فشار بخار یک اتمسفر یا 760 میلی متر جیوه) در 100 درجه سانتیگراد می جوشد. اما اگر در آب، مقداری قند مثلا به غلظت یک مولال (یک مول در 1000 گرم آب) بریزیم، فشار بخار محلول آب قند به اندازه 14 میلی متر جیوه کاهش می‌یابد و در نتیجه محلول در 52/100درجه سانتیگراد می‌جوشد.

کاهش نقطه انجماد
وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، نقطه انجماد آن کاهش می‌یابد. بنابراین دمای انجماد محلولهای آبی همیشه کمتر از دمای انجماد آب خالص است. استفاده از این خاصیت در رادیاتور اتومبیل می‌باشد که برای جلوگیری از یخ زدن آب رادیاتور اتومبیل در زمستان ، به آن مقداری مایع به نام ضد یخ می‌افزایند. همچنین با اضافه کردن نمک (مانند کلرید سدیم) همراه با شن ریز روی آسفالت خیابانهای شهر ، هیدراته شدن یونهای نمکها مستلزم مصرف مقداری آب است که از ذوب شدن برف فراهم می گردد. بنابراین آب نمک غلیظی فراهم می‌شود که حتی در 20 درجه زیر صفر منجمد نمی‌شود.

فشار اسمزی
اگر در ظرف U شکلی ، حلال A از مخلوط حلال و حل شونده (B + A) به وسیله یک غشای نیمه تراوا ، جدا شود، چون فقط حلال از غشا عبور می‌کند، بعد از رسیدن به حالت تعادل ، ارتفاع مایع در قسمت (حاوی B + A) که حل شونده وجود دارد بالا می رود.
اگر به این ستون فشار وارد شود تا سطح مایع در دو طرف یکسان شود، این فشاراسمزی است که به علت حل شدن حل شونده غیر فرار در حلال ایجاد شده است.

به عکس فرآیند اسمز ، اسمز معکوس گویند که برای شیرین کردن آب استفاده می شود. همچنین برای تعیین جرم مولکولی پلیمرها ، پروتئینها و بطور کلی مولکولهای سنگین از فشار اسمزی استفاده می‌شود.

ساختار میتوکندری:


نام میتوکُندری ترکیبی است از دو واژه یونانی Mito به معنای رشته و chondrion به معنی دانه. چون این اندامک اغلب رشته‌ای یا به صورت دانه‌های کوچک در سیتوپلاسم همه سلولهای یوکاریوتی وجود دارد.


میتوکندری‌ها در تمام یاخته‌های دارای تنفس هوازی به جز در باکتری‌ها که آنزیم‌های تنفسی آنها در غشای سیتوپلاسمی جایگزین شده‌اند وجود دارند. این اندامک‌ها، نوعی دستگاه انتقال انرژی هستند که موجب می‌شوند انرژی شیمیایی موجود در مواد غذایی با عمل فسفوریلاسیون اکسیداتیو، به صورت پیوندهای پرانرژی فسفات (ATP) ذخیره شود.

فهرست مندرجات
۱ تاریخچه
۲ شکل و اندازه میتوکندری و تغییرات آنها
۳ ساختمان میتوکندری
۴ ژنوم میتوکندری
۵ نقش زیستی میتوکندری
۶ منشا میتوکندری
۷ منبع



[ویرایش] تاریخچه
اولین بررسی‌های انجام شده بر روی میتوکندری‌ها، در سال 1894 به‌وسیله آلتمن صورت گرفت که آنها را بیوپلاست یا جایگاههای زنده نامید. و نظر داد که بین واکنشهای اکسایش و کاهش سلول و میتوکندری وابستگی وجود دارد. در سال (1897) بتدا با بررسیهای بیشتر آنها را میتوکندری نامید و در 1900، میکائیلیس به کمک معرف رنگی سبز ژانوس میتوکندری را در سلولهای زنده مشاهده کرد. واربورگ در سال 1913 آنزیمهای تنفسی را در این اندامک نشان داد. سرانجام برای اولین بار، در سال 1934، بنسلی و هر، توانستند آنها را از سلولهای کبدی جدا کرده و بعد آن بررسیهای بیشتر و عملی‌تر روی آن صورت گرفت.





[ویرایش] شکل و اندازه میتوکندری و تغییرات آنها
شکل میتوکندریها متغیر اما اغلب رشته‌ای یا دانه‌ای می‌باشند. میتوکندریها در برخی مراحل عمل خود می‌توانند به شکلهای دیگری درآیند. مثلا، یک میتوکندری طویل ممکن است در یک انتهای خود متورم شده و به صورتی شبیه گرز درآید. (مثلاً در سلولهای کبدی چند ساعت بعد ورود غذا) یا ممکن است میان تهی شده و شکلی شبیه راکت تنیس به خود بگیرد. گاهی میتوکندریها حفره مانند شده و دارای بخش مرکزی روشنی می‌شود. اما بعد از مدتی، تمام این تغییرات به حالت اول برمی‌گردد.

اندازه
اندازه میتوکندریها نیز متغیر است و در بیشتر سلولها ضخامت آنها 50µm و طول تا 7µm می‌رسد. اما متناسب با شرایط محیطی و نیز مرحله عمل سلول، فرق خواهد کرد. در سلولهایی که هم نوع هستند یا دارای عمل مشترک می‌باشند دارای اندازه ثابت می‌باشند.


[ویرایش] ساختمان میتوکندری
غشای خارجی حدود 75 - 60 آنگستروم ضخامت دارد و از نوع غشاهای زیستی با ساختمان سه لایه‌ای می‌باشد. این غشا صاف و فاقد چین خوردگی است و هیچ ریبوزومی به آن نچسبیده، گاهی توسط شبکه آندوپلاسمی احاطه می‌شود اما هیچگاه پیوستگی بین این دو دیده نشده است.

اطاق خارجی زیر غشای خارجی، فضایی در حدود 200- 100 آنگستروم وجود دارد که به آن اطاق خارجی گفته می‌شود. که شامل دو بخش است: فضای بین دو غشا و فضای درون تاجها یا کریستاها یا کرتها. اما در برخی جاها غشای داخلی و خارجی بهم چسبیده و اندازه این فضا تقریباً صفر می‌شود. در این مناطق در مجاورت دو غشا، تراکمی از ریبوزوم های سیتوپلاسمی دیده می‌شود. به خاطر همین در نظر گرفته شده که این مناطق، محل عبور پروتئینهای مورد نیاز از سیتوزول به میتوکندری می‌باشند. در این اطاق، ترکیباتی مثل آب، نمکهای کانی و یونها، پروتئینها، قندها، و چربیها SO2، O2، ATP و ADP وجود دارند. مقدار آب، بر اندازه کریستاها و در نتیجه بر ساخت ATP تأثیر گذار است.

غشای داخلی ضخامتش مثل غشای خارجی است اما ترکیب شیمیای آن فرق می‌کند. دارای چین‌خوردگیهای فراوانی است که به چینها، تاج یا کریستا گفته می‌شود. این چینها برخلاف سلولهای گیاهی، در سلولهای جانوری منظم قرار گرفته‌اند.

اطاق داخلی فضای درونی میتوکندری که به‌وسیله غشای داخلی دربرگرفته شده، اطاق داخلی گویند. که از ماده زمینه‌ای با بستره دربر گرفته شده است که ترکیب و ویژگیهای کلی آن، شبیه سیتوزول می‌باشد و دارای آنزیمهای خاص و ریبوزوم خاص خود (70S شبیه سلولهای پروکاریوتی) می‌باشد. تعداد DNA، بر حسب نوع و سن سلول فرق می‌کند و مثل پروکاریوتها، دارای سیتوزین و گوانین زیادی است در نتیجه در مقابل گرما مقاوم می‌باشد.


[ویرایش] ژنوم میتوکندری
بررسیها نشان می‌دهد که DNA سازی در میتوکندری صورت می‌گیرد. طبق این بررسی به وجود DNA در میتوکندری پی می‌بریم. علاوه بر همانند سازی RNA و DNA سازی، پروتئین سازی هم در میتوکندری صورت می‌گیرد. این فراینده توسط آنزیمها و ملکولهای خاص خود اندامک صورت می‌گیرد. DNA میتوکندری اغلب موجودات حلقوی است. جایگاه DNA در ماده زمینه میتوکندری و بعضی مواقع چسبیده به غشای داخلی میتوکندری است. ژنوم میتوکندری سلولهای اغلب جانوران از 20 - 15 هزار جفت نوکلئوتید تشکیل یافته است و ژنوم میتوکندری در پستانداران حدود 105 برابر کوچک‌تر از ژنوم هسته‌ای است.

محصولاتی که توسط DNA میتوکندری رمز می‌شوند شامل RNAهای ریبوزومی میتوکندری tRNA ها و برخی از پروتئینهای مسیر تنفس می‌باشد. بعضی از پروتئینهای میتوکندری نیز در هسته رمز می‌شوند و پس از ساخته شدن در سیتوزول وارد اندامک می‌شوند. مثال مفروض از صفتی که توسط ژنوم میتوکندری تعیین می‌شود، جهت پیچش صدف در حلزون است که از وراثت سیتوپلاسمی تبعیت می‌کند. در حقیقت این صفات توسط ژنوم میتوکندری که همراه میتوکندری‌های موجود در سیتوپلاسم وارد سلول تخم می‌شوند، انتقال می‌یابد و توارث به صورت تک والدی در اکثر آنها می‌باشد.


[ویرایش] نقش زیستی میتوکندری
تنفس هوازی سلولها
تمام مواد انرژی‌زا، ضمن تغییرات متابولیکی درون سیتوپلاسمی با واسطه ناقلین اختصاصی به بستره میتوکندری می‌رسد. گلوکز بعد از تبدیل به استیل کو آنزیم A طی گلیکولیز به میتوکندری وارد می‌شود تا در چرخه کربس استفاده شود و اسیدهای چرب به‌وسیله کارنی تین به داخل میتوکندری حمل شده که اینها هم سرانجام به استیل کو آنزیم A تبدیل می‌شوند. اسیدهای آمینه بعد از ورود به بستره به استیل کو آنزیم A تبدیل می‌شوند.

با انجام هر چرخه کربس که با استفاده از یک استیل کوآنزیم A در بستره میتوکندری آغاز می‌شود، علاوه بر CO2 و H2O سه مولکول نیکوتین آمید آدنین دی نوکلئوتید و یک مولکول FADH2 و یک مولکول GTP تولید می‌شود. این ناقلین انرژی در زنجیره انتقال الکترون استفاده شده و موجب تولید ATP می‌شوند.

سنتز اسیدهای چرب
یکی از راههای تولید اسید چرب، سیستم میتوکندریایی می‌باشد که عکس اکسیداسیون یا تجزیه آنها می‌باشد.

دخالت میتوکندری در گوارش چربیها
در هنگام گرسنگی، میتوکندریها به طرف ذرات چربی حرکت کرده و روی ذرات چرب خم شده و آنزیمهای میتوکندریایی شروع به هضم چربی و آزادسازی انرژی می‌کنند.

ذخیره و تجمع مواد در میتوکندریها
میتوکندریها می‌توانند در اطاق داخلی خود مواد مختلف را انباشته کنند که این مواد عبارت‌اند از: ترکیبات آهن‌دار، چربیها، پروتئینها، کاتیونها و آب. در اثر ذخیره این مواد، میتوکندریها اغلب به حالت یک غشایی و شبیه باکتریهای کوچک دیده می‌شوند و به تدریج، کریستاها محو می‌شوند اما بعد از حذف این مواد، دوباره همه به حالت اول برمی‌گردد.

محل میتوکندریها در سلول
اغلب در اطراف هسته دیده می‌شوند اما در شرایط مرضی در حواشی سیتوپلاسم ظاهر می‌شوند. این پراکنش، تحت تأثیر مقدار گلیکوژن و اسید چرب می‌تواند قرار بگیرد. در طول میتوز میتوکندریها در مجاورت دوک جمع می‌شوند و وقتی تقسیم پایان می‌یابد، در دو سلول دختر، پراکنش تقریباً یکسانی پیدا می‌کند. پراکنش میتوکندریها را می‌توان بر حسب عمل آنها از نظر تامین انرژی، مطرح کرد که میتوکندریها در داخل سلولها جابجا شده و خود را به جایی که نیاز به ATP بیشتر است می‌رسانند.

تعداد میتوکندریها در سلول
تشخیص ارزش میتوکندریایی یک سلول دشوار است. اما اغلب بر حسب نوع سلول مرحله عمل سلول متفاوت می‌باشد. در یک سلول معمولی کبد بیشترین تعداد و در حدود 1000 تا 1600 عدد وجود دارد که در اثر تحلیل رفتن سلول و نیز سرطانی شدن آن کاهش می‌یابد. و در مقابل، تعداد میتوکندری در بافت لنفی، خیلی کمتر است. در سلولهای گیاهی، کمتر از جانوری می‌باشد چون بسیاری از اعمال میتوکندریها، به‌وسیله کلروپلاست انجام می‌شود.


[ویرایش] منشا میتوکندری
دو نظریه بیان شده است: یکی اینکه میتوکندریها ممکن است از قالبهای ساده‌تری ساخته شوند (تشکیل Denovo) و دیگر اینکه میتوکندریهای جدید از تقسیم میتوکندریهای قبلی بوجود می‌آیند. به این صورت که تعداد آنها، در طول میتوز و نیز در اینترفاز افزایش یافته و بعد بین دو سلول دختر، پراکنش می‌‌یابند.

خاستگاه پروکاریوتی میتوکندری
فرضیه‌ای در این صدد مطرح شده است که: در گذشته بسیار دو ر، جو زمین فاقد اکسیژن بوده و جاندارانی که در آن زمان می‌زیسته‌اند بی‌هوازی بودند. با گذشت زمان و ضمن واکنشهای شیمیایی، جو زمین دارای اکسیژن شده و به تدریج جانداران آن زمان و بویژه پروکاریوتها به علت ساختمان ساده خود، هوازی شده‌اند. بعدها این پروکاریوتها هوازی شده، توسط سلولهای یوکاریوتی بلعیده شدند و از این همزیستی سلولهای یوکاریوتی هوازی ایجاد شدند. پس اجداد میتوکندری براساس این فرضیه، باکتریهای اولیه می‌باشند

برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد